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I. Introduction

Positivity in regularized emission computed tomography
(ECT) reconstruction is important for quantitative
accuracy, especially for low-count data. However, it is
often difficult to impose positivity on the reconstruction
without suffering some other drawback, such as speed
or lack of analyzability of the algorithm. A general
framework for positivity-constrained ECT reconstruction
has been the formulation and possibly constrained
minimization of an objective function comprising a data
penalty (usually log likelihood) and penalty term (a.k.a.
“prior” in Bayesian terms). Here we propose to embed
a positivity constraint via a novel prior for 3D ECT
reconstruction.

The prior generalizes a notion of I-divergence proposed
by Csiszár [1], and also bears a superficial similarity to
formulations previously used in ECT [2], [3], [4]. However,
unlike previous formulations, our new formulation also
includes a notion of object smoothness in addition to
positivity. In addition, the priors are convex and
that makes the reconstruction independent of initial
conditions.

In Sec.II, we describe the new priors mathematically
and prove convexity. In Sec.III, we present initial results
showing 2D and 3D reconstructions using our new priors,
and compare these anecdotally to reconstructions with a
conventional smoothing prior. In Sec.IV, we compare our
work with other relevant work.

II. Theory

A. Regularized Likelihood Reconstruction

Let g = {gi; i = 1, ..,M} and f = {fn;n = 1, .., N}
be the emission data and object, respectively. Here, f

and g are 1D vectors obtained by lexicographic ordering
3D entities into 1D vector. The projection data g has
an independent Poisson distribution with the (negative)
log-likelihood function

ΦL(g; f) = −
∑

i

{gi log ḡi − ḡi} (1)

where ḡ = Hf + r̄ is the Poisson mean of g with mean
background events r̄. Note that H is the M × N system

matrix with element Hin indicating the probability of a
photon from pixel n detected in sinogram bin i.

From the Bayes theorem, the maximum a posteriori

(MAP) reconstruction estimate f̂ of the object f is
obtained by optimizing a regularized likelihood objective
Φ(f ;g) with prior (or penalty) objective ΦP (f). Therefore,

the MAP reconstruction f̂ is computed by

f̂ = argmin
f≥0
{ΦL(g; f) + λΦP (f)}. (2)

where λ > 0 is the global weight controlling the influence
of the prior.

B. Conventional Smoothing Prior

The objective function for a conventional smoothing
prior usually takes the following form

Φs
P (f) =

∑

n

∑

n′∈N (n)

wnn′φ(fn − fn′) (3)

where N (n) indicates the neighborhood system, and
wnn′ ≥ 0 the associated weight. The potential function
φ(fn−fn′) penalizes the difference between neighborhood
pixels. For example, for a quadratic membrane prior [5],
φ(fn−fn′) = 1/2(fn−fn′)

2. Note that neither ΦL nor Φs
P

provides a natural positivity enforcement in Eq.(2). Thus,
Eq.(2) is a possibly difficult constrained optimization
problem since one needs to enforce the non-negativity
constraint in the reconstruction.

C. Priors Based on Cross-Entropy

As a stepping stone towards our new priors, we first
consider another, older form based on I-divergence. The
I-divergence between two positive vectors a and b is
S(a,b) =

∑

n(an log an

bn
− an + bn). S(a,b) is also termed

“cross-entropy” in [3], [4] though definitions of cross-
entropy vary. In [3], and [4], priors of the form Φce

P (f ;m) ≡
S(f ,m) or S(m, f) have been proposed. Here, m is an
external “reference” vector chosen empirically. Each fn is
attracted towards its corresponding mn, and positivity of
f is maintained by the form of S. The “reference vector”
m must be determined empirically! (For all mn’s equal,
the cross-entropy prior becomes a max entropy prior.)
In addition to the problem of determining m, there is



no explicit smoothing of f implicit in Φce
P (f ;m). Thus

Φce
P (f ;m) suffers from two problems.

D. A New Prior: Smoothed I-Divergence

To solve these problems while retaining the positivity,
convexity and differentiability desiderata of S(f ,m)
priors, we define a new prior, termed a smoothed I-
divergence prior. In this definition, m is a variable to be
estimated, and themn’s are defined on a lattice coincident
with the fn. The definition of our first form of the prior
is:

Φfm
P (f ,m) =

∑

n

∑

n′∈N (n)

wnn′φ(fn,mn′)

=
∑

n

∑

n′∈N (n)

wnn′{fn log
fn

mn′
− fn +mn′} (4)

where N (n) again defines a neighborhood of n, and
wnn′ ≥ 0 are positive weights. The form of Eq.(4) embeds
positivity in f , and the prior is also differentiable.

To explore Φfm
P further, consider its role in MAP

reconstruction. Since m is now a variable, the
optimization in Eq.(2) (now unconstrained) becomes a
joint estimation:

f̂ , m̂ = argmin
f ,m
{ΦL(g; f) + λΦfm

P (f ,m)}. (5)

We propose to implement this joint estimation by a form
of alternating (on f and m) descent, which for iteration k
becomes

f̂k+1 = argmin
f

{ΦL(g; f) + λΦfm
P (f , m̂k)} (6)

m̂k+1 = argmin
m
{Φfm

P (f̂k+1,m)} (7)

Equation (6), with m̂k fixed can be carried out by a
suitable unconstrained gradient method. Equation (7) can
be solved in closed form and has the interesting solution

m̂k
n′ =

∑

n∈N (n′) wnn′ f̂
k
n

∑

n∈N (n′) wnn′
, (8)

that is, a weighted arithmetic mean of the f̂k
n ’s in

a neighborhood surrounding n′. Plugging Eq.(8) into
Eq.(6), one thus sees the smoothing nature of the new
prior, thus solving the first problem. The second problem
has also been solved: vector m need not be determined
empirically, and its formulation yields an appealing
interpretation.

A second form of the new prior may be obtained by
swapping f , m in Eq.(4) to obtain

Φmf
P (f ,m) =

∑

n

∑

n′∈N (n)

wnn′φ(mn′ , fn)

=
∑

n

∑

n′∈N (n)

wnn′{mn′ log
mn′

fn

−mn′ + fn} (9)

Again, Φmf
P maintains positivity and is differentiable.

When plugged into the alternation Eqs.(6)(7), however,
the update Eq.(8) becomes something different:

m̂k
n′ = exp

[
∑

n∈N (n′) wnn′ log f̂
k
n

∑

n∈N (n′) wnn′

]

, (10)

which is a weighted geometric mean of the neighborhood
pixels N (n′). Again, we get a prescription for m, and a
novel form of smoothing for f . For convenience, we refer
to Eq.(4) as the FM prior, and Eq.(9) as the MF prior,
with the quadratic version of Eq.(3) the MM prior.

E. Convexity

We would like to show the global convexity of
the regularized likelihood objective with the proposed
smoothing priors. Since the Poisson likelihood is convex,
it is sufficient to show that the prior is convex (w.r.t. both
f and m).

The second derivatives of the MF prior objective are

∂2Φmf
P

∂f2
n

=
∑

n′

wnn′
mn′

f2
n

(11)

∂2Φmf
P

∂m2
n′

=
∑

n

wnn′
1

mn′
(12)

∂2Φmf
P

∂mn′∂fn

= −wnn′
1

fn

(13)

It follows, for all yn, zn′ that

∑

n

y2
n

∂2Φmf
P

∂f2
n

+ 2
∑

n,n′

ynzn′
∂2Φmf

P

∂mn′∂fn

+
∑

n

z2
n′
∂2Φmf

P

∂m2
n′

=
∑

n,n′

wnn′

f2
nmn′

(ynmn′ − zn′fn)
2 ≥ 0. (14)

The Hessian matrix is positive semi-definite (w.r.t. f ,m),
and thus the MF prior is convex. For the convexity of the
FM prior, the proof follows by symmetry. Convexity of
the prior or likelihood alone does not guarantee a unique
solution, but when the likelihood and prior are combined
as in Eq.(2), the solution is unique.

III. Results

In this section, we anecdotally explore 2D and 3D
reconstructions using Φmf

P and Φfm
P and show that the

reconstructions are qualitatively similar to those obtained
with a (positivity constrained) conventional quadratic
smoothing prior.

A. Optimization Details

Since the new priors embed positivity constraints, any
unconstrained method can be used to optimize Eq.(6).
Here, we use the Polak-Ribiere form of the preconditioned
conjugate-gradient (PCG) method [6] with a simple
diagonal preconditioner. For the line search, we use the



method of cubic interpolation [6]. We use, for 2D, a
4 nearest-neighborhood (4NN) system with weights=1.0
for each neighborhood pixel, and 4.0 for the center pixel.
For 3D, we use a 6NN system with weights=1.0 for each
neighborhood voxel, and 6.0 for the center voxel.

For comparison, we also performed a series of
2D reconstructions using the conventional quadratic
smoothing Φs

P . We again use a 4NN neighborhood with
weights as above. To maintain positivity, we used the slow
EM-MAP-ICM algorithm presented in [5].

(a) (b) (c) (d)

(e) (f) (g)
Fig. 1. (a) The 64×64 phantom used in the 2-D simulations. The
noiseless anecdotal reconstructions with priors of (b) MF, (c) FM,
and (d) MM. The anecdotal reconstructions of 100K counts data
using regularized likelihood reconstruction with priors of (e) MF,
(f) FM, and (g) MM.

B. Anecdotal Reconstructions

To test the proposed new priors, we first generated
noiseless and noisy sinograms using the 2D 64×64
phantom shown in Fig.1(a). The 2D phantom has an
intensity ratio of (3.3:1:0) for (ellipse:circle:background).
The projection data had dimensions of 65 angles by
96 detector bins. Only Poisson noise is simulated
and no other physical or geometrical blurring effects or
background events are modeled here. The noisy sinogram
is simulated with 100K counts.

The sinograms are then reconstructed using MF, FM
and MM priors as described above, with the same
smoothing parameter value λ = 1.2 for the noiseless
case, and λ = 2.0 for the noisy case. The noiseless
reconstructions are displayed in Fig.1 for (b) MF, (c)
FM, and (d) MM, respectively, while Fig.1(e)(f)(g) are
for noisy reconstructions of MF, FM, and MM. A profile
plot along the center row of the noisy reconstructions
in Fig.1(e)(f)(g) is illustrated in Fig.2 along with the
phantom. The profile result demonstrates the similar
behavior of the new prior to that of a positivity-
constrained quadratic smoothing prior.

A few performance measures are shown in Fig.3. Plots
of log posterior vs. iteration, and rmse vs. iteration
appear in Fig.3(a) and (b), respectively, for the FM results
of Fig.1(f), but we draw no conclusions from these since
the simulations are not yet sufficiently realistic. We also
display the bias and STD (standard deviation) images
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Fig. 2. Profile plots along the center row of phantom, and
regularized likelihood reconstructions in Figs.1 (e) MF, (f) FM, and
(g) MM priors for the noisy data of 100K counts.

for the FM prior using 200 noisy trials of 100K counts
from the same 2D phantom. The bias and STD images
are computed by bias = 1

200

∑

l(f̂
l − f) and STD =

√

1
199

∑

l(f̂
l −

¯̂
f)2 where

¯̂
f is the mean reconstruction over

200 trials, f the phantom, and f̂ l is the lth reconstruction.
The results for MF and MM priors are similar. As λ
increases, the variance as seen in Fig.3(d) tends to become
more uniform.
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Fig. 3. The performance of the FM priors is illustrated by (a) the
log posterior and (b) the rmse vs. iterations. Also, the bias and
standard deviation images over 200 noise trials for the FM prior
regularized reconstructions are shown in (c) and (d), respectively.

We also generated a 3D phantom with 10 slices of
64×64 each. Each slice has two small hot and cold
circles with an ellipse background. The intensity ratio
is (hot:ellipse:cold)=(1.5:1:0.6). The hot and cold circles
in the top slice have diameters of 10 and 12 voxels,
respectively, while each slice below contains hot and cold
circles of reducing diameters at 1 voxel per slice. A
noisy sinogram is generated with 1000K total counts and
reconstructed with a 3D FM prior of 6NN. Here, we show
only 4 slices of the 3D phantom in the top row of Fig.4,
and the FM reconstructions with smoothing parameter
λ = 5.0 in the bottom row of Fig.4. The 3D results for
the MF and MM priors are qualitatively similar.



Fig. 4. This figure shows the anecdotal regularized likelihood
reconstruction of a 3D phantom (10 slices and each with the size
of 64×64) using the FM smoothing prior. The top row shows 4
consecutive slices of the phantom, and the bottom row shows their
corresponding FM reconstructions. The projection data is simulated
with a noisy level of 1 million total counts. The smoothing parameter
for this 3D case is λ=5.

IV. Discussion

To locate our new work within the galaxy of ECT
reconstruction methods, we take a distant (and very

incomplete!) overview of objective-function based
methods in the context of the following desiderata: (a)
speed, (b) need to specify additional parameters beyond a
global weight λ, (c) whether a notion of object smoothness
is contained in the objective. We consider 3 categories
of methods, (where “method” = objective + algorithm.)
We do not consider any cases for which positivity is not
imposed or the objective is non-convex.

The original ECT EM-ML algorithm and its variants
led to a natural positivity imposition, but, in terms of
(b) required a stopping criterion and initial condition
specification. True EM-based methods are also
notoriously slow, thus failing on point (a). Regularization
helps, and EM-MAP approaches [7], [5] incorporating
smoothing, satisfied (c), helped (b), but still suffered in
terms of speed (a). Our own method, if using gradient
based methods as in Sec. III, is likely to be faster than an
EM version.

A second (non-EM) category of methods includes
constrained gradient and coordinate-descent methods for
optimization. Imposing positivity for a gradient method
is often complex and difficult, and requires judicious
specification of algorithm-specific parameters [8], [9] to
attain a good result, thus failing on point (b), though
excelling on point (a) and satisfying (c). To a great
extent, the failing on (b) can be overcome [10] with
improved methods. Sequential Gauss-Seidel coordinate
descent methods [11], [12] incorporate positivity easily,
and can be fast.

A third category of approaches embeds positivity
directly into the prior. Our approach, and ones based
on cross-entropy [2], [4], [3] and max-entropy [13] apply
here. A very similar prior is the independent gamma
prior proposed in [14]. The cross-entropy and gamma
formulations fail badly on point (b), requiring empirical
specification of a pointwise “reference image” as outlined
in Sec. II-C, and no explicit notion of object smoothness is
incorporated in these approaches. (In [2], [4], smoothing

is indeed introduced in an empirical fashion.) Our own
priors thus surmount the difficulties listed above.

A final, nice feature of our formulation is that the
performance of the method (i.e. mean and covariance of f̂)
may be analyzable using the theoretical methods in [15].
To qualify for [15], the objective should be (i) smooth, (ii)
nearly quadratic, and (iii) be used in an unconstrained
optimization. We are currently investigating this issue.
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